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Abstract. In this paper we use a combination of analytical and numerical techniques to analyse the onset of steady
Marangoni convection in a spherical shell of fluid with an outer free surface surrounding a rigid sphere. In so
doing we correct the formulation of the problem and the results presented by Cloot & Lebon (Microgravity sci.
technol. 3 (1) 1990: 44-46). We find that if the free surface of the layer is non-deformable then the layer is always
stable when heated from the outside and is unstable when heated from the inside if the magnitude of the (positive)
non-dimensional Marangoni number is sufficiently large. If the free surface of the layer is deformable then the
layer is always unstable when heated from the inside. It is stable when heated from the outside if C < r2/4, but if
Cr > r2/4 then it is unstable if the magnitude of the (negative) Marangoni number is sufficiently large, where C,
is the non-dimensional Crispation number and r2 the non-dimensional radius of the undisturbed outer free surface
of the fluid.

1. Introduction

The aim of this paper is to describe the onset of steady Marangoni convection in a spherical
shell of fluid with an outer free surface surrounding a rigid sphere.

A great deal of work has been performed to investigate the onset of Marangoni convection
in a planar layer, beginning with the pioneering contribution of Pearson [8]. He showed that if
the layer is heated from below and the upper free surface is non-deformable then it is unstable
to steady Marangoni convection driven by surface tension gradients when a suitably defined
non-dimensional Marangoni number exceeds a critical value. Scriven & Sternling [12] relaxed
the restriction of a non-deformable free surface and found that including capillary waves at
the free surface has a dramatic destabilising effect on the layer, and Smith [13] showed that
including gravity waves as well has a stabilising effect on long wavelength disturbances. The
layer is always stable to steady Marangoni convection when heated from above. Takashima
[14,15] performed extensive numerical calculations for the onset of both steady and overstable
convection, and more recently Gouesbert et al. [4] have generalised his work.

By contrast much less work has been done on the onset of Marangoni convection in a
spherical geometry. The first paper on the subject of which the author is aware is that by
Pirotte & Lebon [9] who followed the approach taken by Chandrasekhar [1, Chap. VI] for
the related problem of buoyancy-driven convection in a spherical geometry, and calculated
critical values of the Marangoni number for the onset of steady convection in the simplest
case when the outer free surface of the fluid is non-deformable. Hoefsloot & Hoogstraten
[5] solved the same problem but obtained different critical values for the Marangoni number,
an inconsistency which was resolved by Pirotte & Lebon [10] who identified a mistake in
the non-dimensionalisation in their earlier work. Once this error was corrected the results
from the two papers are in agreement. Both works treated both isothermal and constant heat
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flux thermal boundary conditions at the inner boundary. Cloot & Lebon [2] extended the
earlier work of Pirotte & Lebon [9,10] to include the effects of a deformable free surface.
Unfortunately, they made a number of errors in the formulation of the boundary conditions
for the problem, with the consequence that the interesting bifurcation behaviour they describe
needs to be re-examined. Recently Lebon, Dauby & Cloot [7] have reviewed the work on this
problem.

In this paper we shall investigate the onset of steady Marangoni convection in a spherical
geometry with a deformable free surface. The work extends that of Pirotte & Lebon [9,10]
and Hoefsloot & Hoogstraten [5] and extends and corrects that of Cloot & Lebon [2].

2. Problem formulation

The basic geometry we wish to examine is that of a spherical shell of quiescent fluid with an
outer free surface of radius R 2 and temperature T2 about a rigid sphere of radius R 1 < R 2 and
temperature T 1. The sphere is surrounded by a passive gas at temperature Too and pressure
P,, and for convenience we define d = R 2 - R 1 to be the thickness of the undisturbed shell
of fluid.

Subject to the Boussinesq approximation and neglecting the effect of gravity entirely the
governing equations for an incompressible fluid with velocity U, temperature T and pressure
P are

c9U1
t + (U V)U = -- VP + V2U, (1)

-T + U- VT = cV2T (2)
at

V U = 0, (3)

where the constants p, v and /c represent the density, kinematic viscosity and thermal diffusivity
of the fluid respectively. The fluid motion (if any) is driven entirely by the thermocapillary
effect at the outer free surface, where the surface tension r is taken to be dependent on the
temperature T according to the simple linear law r = ro - y (T - T2), where the constant T0

is the value of r in the undisturbed state and the constant y is positive for normal fluids. At
the outer free surface the usual conditions of continuity of normal and tangential stress hold
and the temperature obeys Newton's law of cooling, viz.

8T
-k-o = h(T- T),an

where k is the thermal conductivity of the fluid, h is the heat transfer coefficient between
the free surface and the gas and n is the outward unit normal to the free surface. At the
inner boundary in addition to the usual no slip boundary condition for the fluid velocity we
consider two different thermal boundary conditions. Either the temperature of the boundary
is held constant at T (the so called "conducting" boundary condition) or the heat flux is held
constant (the so called "insulating" boundary condition).

To simplify the analysis we introduce non-dimensional variables. Taking the scales for
length, time, velocity and temperature to be d, d2/c, /d and (T1 - T2) respectively and non-
dimensionalising the equations and boundary conditions gives rise to five non-dimensional
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groups, namely the Prandtl number Pr = v/n, the Marangoni number M = (T -T2 )d /pvn,
the Crispation number Cr = pvc/rod, the Biot number Bi = hd/k and the non-dimensional
radius of the rigid sphere rl = R 1/d. The non-dimensional radius of the undisturbed free
surface r2 = R 2 /d is given by r2 = rl + 1. Note that if the layer is heated from the inside
then T1 > T2 and so M > 0 while if the layer is heated from the outside then Tl < T2 and so
M < 0. Hereafter all quantities will be non-dimensional unless stated otherwise.

To describe the situation we choose spherical polar co-ordinates (r, 0, ) with their origin
at the centre of the rigid sphere r = rl. In the undisturbed state the free surface is at
r = r2, and when motion occurs it will be deformed and then we denote its position by
r = r2 + F(O, 0, t). The equations and boundary conditions admit a solution in which the
fluid is at rest, U = Uo = 0, the temperature is given by T = To(r) = a/r + P where
a = rlr2 and ,3 = r2 T 2 - rlT1 , the pressure is constant, P = Po = POO + 2Pr/r2Cr, and
the free surface is undeformed, F = Fo = 0. In what follows we shall investigate the linear
stability of perturbations to this basic state.

3. Linearised Problem

We analyse the linear stability of the basic state in the usual manner by seeking perturbed
solutions in the form

U=Uo + U 1, T = To + T, P = Po + P1 , F = Fo + F,

where U = (ur, uo, u,). Substituting these forms into the governing equations (1) - (3)
and neglecting second order and higher terms in the perturbation quantities we obtain the
linearised equations

V2 _ 1 a Ul I VP,, (4)
Pr a ) PI

(V2- ) T =_a U, (5)

V. U = 0. (6)

To eliminate P1 we take the curl of equation (4) twice and use equation (6) to yield the equation

V2 [V2 (ru ) = 0 (7)

for ur derived by Chandrasekhar [1, Chap VI]. For convenience we define the operator L2 by

L2_ [ a .( 1821L2= sin a(sin - ) + sin 2 (8)
sin 0 af r a sm 0 

so that we can write

V2_ = 1 (r28 )- L2.
r2 r O r] r2

The linearised version of the kinematic boundary condition at the free surface r = r2 + F 1 is
given by

F 0 (9)
-- -Ur = 0 (9)
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evaluated on r = r2. The condition of continuity of normal stress across the free surface takes
the form

[n. T.n] Pr KT (10)
Cr

where [. . .] + denotes the jump across the free surface, T is the stress tensor in the fluid, n is the
unit outward normal at the free surface and K is the curvature of the free surface. Neglecting
second order and higher quantities in the perturbation quantities we have

n I= (1,- OF1 1 aF\, K=Vn= 2 (2- L2 )F,
r 00 ' r sin 0 O = r2 

At leading order equation (10) yields -P + Po = 2PT/rC, evaluated on r = r2 and hence
Po = PO0 + 2P/r 2Cr, while at first order we obtain

2Pau, = -P, [2MCr (T- aF) + (2 - L2 )F11
Or C, [r \.

evaluated on r = r2. Using equation (4) we can show that

2p = p3 [r (V2-p ft) (fur)] (12)

and so applying the operator L2 to the boundary condition (11) and using equation (12) to
eliminate L 2P1 we obtain

a r(a2 2 9 32 - - (rr)
ar a \r2 + r r2 Pr at/ 

+ L2 [2 (T l ) (2 L2)F] 0, (13)

evaluated on r = r2. The conditions of continuity of tangential stress at the free surface take
the forms

to T n =-M to VT, t T n =-M t. VT, (14)

where to and t¢ are orthonormal tangent vectors to the free surface in the 0- and ¢-directions
respectively. Neglecting second order and higher quantities in the perturbation quantities we
have

to= _,r 0 1 ,0 , tI = 1 OF ,
to r49 1 OI to rsinO 4

and so at first order the tangential stress conditions yield

ra (O 1 our M [OTi a aF1 
r- - ___ (15)

ar r r aOs r 00 r 2 800

1 aur 0 U M laOTI a F(16)
r sin O k.+r r rsin r sin 0 r2 0 (16)
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evaluated on r = r2. We can combine these two equations to obtain the single condition

[ (r2r + 2 [M (T c2 ) + Ur] =o, (17)
r2 rr r

which we can also write in the form

02 (2 - L2) M 2 oF 
[r2 ( 2 I (rur) + M L2 (Ti i) = 0 (18)ar2 r r 2

evaluated on r = r2. At first order Newton's law of cooling yields the condition

9TI + 2-F + B i T- )-O (19)9r r3 r2

evaluated on r = r2. At the inner boundary r = rl the no slip condition means that u, =
u = u = 0 and hence, using equation (6), that 9(ru,)/Or = 0. The conducting boundary
condition yields T = 0 and the insulating boundary condition aT1 /Or = 0 evaluated on
r = rl.

4. Solution of the linearised problem

Motivated by the form of the operator L2 we seek solutions in the form

ru, = w(r)Yim ( 0, 4)e at, (20)

T = T(r)Yim ( 0, O)e't, (21)

together with

Fi = FYm(0, )e t, (22)

where Ym(0, 4) are the spherical surface harmonics ytm(0, ) = Pm(cos 0)eimO, where
P (cos 0) are associated Legendre polynomials, which satisfy the equation

L2YIm(0, I) = l(l + 1)Ytm(0, 4) (23)

for 1, m = 1,2, 3,... and the unknown temporal exponent a is in general complex. Substituting
these solutions into equations (7) and (5) we obtain the governing equations

( d2 2 d 1(1+ 1)) ( d2 2 d (1+ 1) a (24)
\ dr2 r dr r2 Jr dr r2 Pr J = · (24)(d2 2d l(l1) i) Q

d r2 dr r2 _ + )-o) T + w = 0, (25)

and the boundary conditions

aF- = 0, (26)
r

dr -2 r2 o/- 1( _ 1)) [l( + 1)Fdr ( dr2 1 ) P r2 [ Cr1 (27)

dr2 - r 2 rW + ( (T- ) = 0, (28)

dT 2aF +B( c F\
aF- ) (29)

dr Or2 j=V
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evaluated on r = r2 and

w = 0, (30)
dw

= 0, (31)
dr

together with either

dT
T=O or -= 0 (32)

dr

evaluated on r = rl. Notice that we have used equation (18) to eliminate M from equation
(13) to obtain equation (27).

4.1. THE PLANAR LIMIT

An important check on the correctness of the above formulation is that in the limit rl oo
we should recover the equations and boundary conditions in the case of a planar layer of
thickness d. We write r = rl + z so that the undisturbed layer lies between z = 0 and z = 1
and as rl oc then w(r) rl W(z), T(r) , T(z), a r and 1(1 + 1) - r2a2 , where a is
the wave number in the plane. In this limit we obtain the equations

d2 2 ( d2
2 o'

dz2 a) dz 2 a - P - W = 0, (33)

(d22 - _ ) T+W = 0, (34)

and the boundary conditions

caF- W = 0, (35)
d (d 2 2 o W a4 F 0(

(dz (d2 3a - C = °' (36)
d- z2- C'

d 2 + 2 ) W + a 2 M(T- F) = 0, (37)

dT
dT + B(T - F) = 0 (38)
dz

evaluated on z = 1, and W = dW/dz = 0 together with either T = 0 or dT/dz = 0
evaluated on z = 0. This formulation is in exact agreement with that given by Takashima
[14,15] for the onset of Marangoni convection in a planar layer in the absence of gravity.

4.2. COMPARISON WITH CLOOT & LEBON [2]

At this point we observe that the above boundary conditions differ from those presented by
Cloot & Lebon [2] for the same problem. The most significant difference between their work
and the present one is their equation (3.9), which should correspond to our equation (27).
Rather than using the operator L2 to differentiate the boundary condition (11) along r = r2 as
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we have done Cloot & Lebon [2] apparently differentiated it with respect to r across r = r2
and then substituted for

P = Pr (V2 a) (ru)
ar r ( P, t (rut)

from the r-component of the governing equation (4). Not surprisingly, since the boundary
condition (11) only holds on r = r2 and not across it, their resulting boundary condition (3.9)
is incorrect. There are three other more minor differences. Equation (2.11) of their paper,
corresponding to the present equation (9), has an extra factor of 1/Pr multiplying the term
aF/Ot. However, since the authors only consider the onset of steady convection this error
has no effect on the results presented. Their equation (3.8), corresponding to the present
equation (28), has an extra factor of 2 multiplying the term aF/r2 arising from the first
order perturbation in To caused by the deflection of the free surface. Their equation (3.10),
corresponding to the present equation (29), omits the term 2aF/r3 arising from the first
order perturbation in aTo/lar caused by the deflection of the free surface. Notice that as a
consequence of these errors Cloot & Lebon's [2] boundary conditions do not reduce to those
for the plane case in the limit rl -- o. None of these errors affect the special case C, = 0
treated by Pirotte & Lebon [9,10] but obviously the interesting new behaviour described by
Cloot & Lebon [2] in the case C, $ 0 must be re-examined.

5. The onset of steady convection

In the remainder of this work we shall consider only the onset of steady convection charac-
terised by a = 0, and in this special case the equations and boundary conditions (24) - (32)
become

(dr2 + r dr r2 W = 0, (39)

d2 2d 1(1+ 1)
2 + r w = 0, (40)

r2+r dr r2 r

together with

w = 0, (41)

d d2 31(l + 1) 1 l(l +1)(- 1)(l+2)F (2
= 0, (42)dr dr2 r ) r2C,

d2w Ml(l + 1) (T- = 0, (43)
djr 2 + r r2 -

dT + 2aF + T- aF (44)

evaluated on r (44)
evaluated on r = r2 and

w = 0, (45)
dw
d = 0, (46)
dr
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together with either

dT
T=0 or d- 0 (47)

dr

evaluated on r = rl.

6. Solution for Steady Convection

Equations (39) and (40) have the general solutions

w(r) = Air l + A 2r1+2 + A 3
r- ( l +l ) + A 4 r- ( ' - l) , (48)

T(r) = Blr- + B2rl+ l + B 3r- ( t+2 ) + Br - 1 + Bsrt + B 6 r- ( +l ), (49)

where

21B1
2 (l + 1)B2 2(l + 1)B3 21B4Al= , A2 - , A3 - , A4 =a a a a

If we solve equation (42) for the free surface deflection then we obtain

r2C, d r(d 2 31(1+ 1) 1
1(l + 1)(1-1)(l + 2) dr [ dr2 r2 (50)

evaluated on r = r2, provided that 1(1 + 1)(l - 1)(1 + 2) $ 0, i.e. I $ -2, -1,0, 1. The
six unknowns B 1,..., B6 are then determined by the remaining six boundary conditions.
The dispersion relationship between M, 1, Cr, Bi and rl is determined by substituting the
general solutions into the boundary conditions and evaluating the resulting determinant of the
coefficients of the unknowns, which can be written in the form D1 + MD 2 = 0, where D1
and D2 are two 6 x 6 determinants which are independent of M. In fact it is easy to show that
D1 is also independent of Cr and D 2 of Bi and hence that on the marginal stability curves M
has the functional form

M = a(l, r) + 3(l, rl)Bi (51)
1 + y(l, rI)Cr

where a(l, rl), 3(I, rl) and y(l, r l) are functions of I and rl. In practice the calculation of
M was performed in two different ways. The first method was to use the MAPLE computer
algebra package running on a SUN SPARCstation to solve the equations subject to the
boundary conditions directly. The analytical expressions of the functions a(l, rl ), /3(1, rl ) and
-y(l, rl) were obtained this way but, since they are rather too complicated to be useful, they
are not repeated here. The second method was to use a FORTRAN program employing the
NAG routine F03ADF and running on a VAX mainframe to evaluate Dl and D 2 numerically
and hence calculate M = -D 1/D 2 . In all the cases considered both methods gave exactly
the same answers to within the bounds of numerical error and the analytical and numerical
results obtained are presented in the following section.

7. Results

7.1. THE MARGINAL STABILITY CURVES

The marginal stability curves in the (1, M) plane on which = 0 are given by M =
M(l, C, Bi, rl) and separate regions of unstable modes with R(ac) > 0 from those of stable
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modes with R(a) < 0, where R(.) denotes the real part of a complex quantity. In all the cases
considered the portion of the (1, M) plane lying above the marginal stability curves in the
half-plane M > 0 and the portion lying below them in M < 0 (if any) correspond to unstable
modes and so we can calculate a minimum and a maximum critical Marangoni number,
denoted by M = M + (Cr, Bi, rl ) and M = M c (Cr, Bi, rl ) respectively with corresponding
critical wave numbers 1 = l+(C, Bi, rl) and = lc (C, Bi, rl), such that disturbances
with Marangoni numbers lying in the range M < M < M + are linearly stable to steady
convection. Notice that although we can calculate the marginal stability curves for all real
values of I only those values of M for integer values of I = 1,2,... correspond to physically
realisable situations, and the task of calculating M + , + and M c , lc is simply that of finding
the appropriate minimum and maximum values of M for integer values of 1 = 1,2, ....

7.2. NON-DEFORMABLE FREE SURFACE

In the special case Cr = 0, corresponding to the asymptotic limit of large surface tension,
the free surface is non-deformable so that F = 0 and the boundary conditions (43) and (44)
simplify to give

d2 w Ml(l + 1)T = , (52)
dr2 r-T+ BiT = 0, (52)

drdT
+ BIT = 0 (53)

evaluated on r = r2 in agreement with the formulations of Pirotte & Lebon [9,10] and
Hoefsloot & Hoogstraten [5].

Typical numerically calculated marginal stability curves when Cr = 0 are shown in
Figure 1 for a range of values of Bi when rl = 1 in both conducting and insulating cases.
Note again that although we have plotted the marginal stability as a continuous function of I
only the points corresponding to integer values of 1 = 1, 2, ... (marked with a dot) correspond
to physically realisable situations. When Cr = 0 the marginal stability curves always lie in
the half-plane M > 0 so that M = - oo and Ic is undefined, which means that all situations
with M < 0 are always stable while those with M > 0 are stable only if M < M +. The
curves in Figure 1 also illustrate that the different thermal boundary conditions at the inner
boundary affect the long wavelength (1 - 0) behaviour of the curves. In fact we can solve the
appropriate leading order problems to show that as -- 0 then in the conducting case

1 (rl + r2Bi)
M rlf' (54)I rlfl

while in the insulating case

M 2 (55)

if Bi = 0 and

1 Bi
M f IB (56)f2
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Fig. 1. Numerically computed marginal stability curves plotted as functions of I > 0 when Cr = 0 and rl = 1
for a range of values of Bi in (a) the conducting case (b) the insulating case. The points corresponding to integer
values of I = 1,2,... are marked with a dot (e).

if Bi 7 O, where the functions fl and f2 are given by

= 4r2 [+ 9rlr2 - rl+ 6(rll+r2)rlr2ln( r)],2
f -- 4(rl + r2) 

f2 = r r2+ 4rr2- 5r +2r(r, + 2r2)n .
24(ri + r2)[ 2L1 G2}

(57)

(58)

In the opposite limit of short wavelength disturbances (1 - oo) then we can again solve the
appropriate leading order problem to show that

4(21 + 1)(1 + r 2Bi)
M 2

rlr2
(59)

as 1 - oo, regardless of the thermal boundary condition at the inner boundary.
Typical numerically calculated values of M + and l+ are shown in Table 1 for a range

of values of Bi and rl in both conducting and insulating cases. Table 2 shows numerically

l



The onset of steady Marangoni convection in a spherical geometry 437

Table 1. Numerically calculated values of M+

and l+ when C, = 0 for a range of values of Bi
and rl in both conducting and insulating cases. In
the limit Bi -- oo the limiting value of M+l/B
rather than M+ is given.

Conducting Insulating

rl Bi M + I+ M,+ l+

1 0 73.4957 2 47.2500 1
1 1 127.5290 3 113.2931 2
1 5 329.3507 3 302.6425 3
1 10 566.5070 4 536.1769 3
1 00 47.1743 4 45.5806 4
5 0 76.6182 10 46.0369 1
5 1 116.8962 12 98.3159 9
5 5 264.3068 14 241.9132 12
5 10 443.1586 15 412.6841 13
5 oo 35.2312 16 33.5765 15

10 0 77.9130 20 46.8102 1
10 1 116.3334 23 97.1438 18
10 5 257.3266 27 234.7074 24
10 10 428.1877 28 397.9382 25
10 00 33.6644 31 32.0452 28

calculated values of M + , aM+/IBi and 1+ in the case rl = 15 for a range of values of Bi
in the conducting case and demonstrates that, in agreement with the functional form given in
equation (51), M + is a piecewise linear increasing function of Bi with the discontinuities in
aM+/OBi corresponding to the discontinuous jumps between integer values of l + .

Figure 2(a) and Figure 2(b) show the behaviour of the computed values of M + and

(l+(l+ + 1))2/rl plotted as functions of rl when Bi = 0 in the conducting case and
demonstrate how the solution in the planar case is recovered in the limit rl ccx in which
M + 79.607 and (1+(l1+ + 1))2/rl 1.99. The oscillations in M,+ are shown in greater
detail in Figure 2(c). Note that the discontinuities in aOM+/Orl correspond to the discontinu-
ous jumps between integer values of l +. The oscillations in Mt and associated discontinuities
in l + occur because the symmetry constraints of the spherical geometry mean that the fluid
has only a discrete set of possible modes and neither occur in the planar limit rl - oo when
a continuum of possible modes is available.1

7.3. DEFORMABLE FREE SURFACE

In the general case Cr 7 0 the free surface is deformable and, as we shall see, this has a
dramatic effect on the stability characteristics of the layer.

' For the same reason similar results have recently been obtained numerically by Lebon & Dauby [6] for the
onset of steady Marangoni convection in a finite-sized rectangular box with a non-deformable free surface which
also approach the values in the planar case as the lateral dimensions of the box are increased.
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Fig. 2. Numerically computed values of (a) M + and (b) (1+(I + + 1))½/rl plotted as functions of rl in the
conducting case when Cr = 0 and Bi = 0; (c) shows the first part of the curve for M + in greater detail.
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Table 2. Numerically calculated val-
ues of M,+, aM+/3Bi and l,+ when
C, = 0 in the case r = 15 for a range
of values of B, in the conducting case
demonstrating that M + is an increasing
piecewise linear function of Bi.

Bi M+ oM+/oB l+

0 78.4280 40.2018 30
1 116.2324 36.5994 34
2 151.9278 34.9272 37
3 186.6956 34.5179 38
4 221.0172 34.1718 39
5 255.0517 33.8835 40
6 288.9352 33.8835 40
7 322.5894 33.6483 41
8 356.2378 33.6483 41
9 389.7369 33.4621 42

10 423.1990 33.4621 42

M

Fig. 3. Numerically computed marginal stability curves plotted as functions of 1 > 1 when Bi = 0 and rl = 1 for
a range of non-zero values of C, = 10- 6, 10-4 , 10- 2 and 1 in the conducting case. The points corresponding to
integer values of = 1,2,... are marked with a dot ().

Typical numerically calculated marginal stability curves for a range of values of Cr 0
are shown in Figure 3 when Bi = 0 and rl = 1 in the conducting case. The curves shown in
Figure 3 are dramatically different from those in the case Cr = 0 shown in Figure 1, firstly
because they all take the value M = 0 at = 1 and secondly because for sufficiently large
values of Cr they extend into the half-plane M < 0.

As we can see from equation (50) when Cr #7 0 the case I = 1 requires special attention.
In this case we can solve equation (44) for F and then use the remaining boundary conditions
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to solve for the unknowns B 1, ... , B6 . However, if we do this we find that when M 0
then only the trivial solution B 1 = ... = B6 = 0 is possible, while if M = 0 then there is a
non-trivial solution given by B 1 ... = B4 0 and B6 = -r B 5 in the conducting case or
B6 = rB 5/2 in the insulating case. We are therefore forced to conclude that M = 0 at = 1
when Cr 0 regardless of the other parameters and the thermal boundary conditions at the
inner boundary. In all the cases considered this is the minimum value of the marginal stability
curves in M > 0 and so M + = 0 at + = 1 which means that, in sharp contrast to the case
Cr = 0, all the situations with M > 0 are always unstable.

In the limit of short wavelength disturbances ( -- o) we can solve the appropriate leading
order problem to show that

M - 4(21 + 1)(I + r2Bi) (60)
rl(r2 - 4Cr)

as I -* oo, regardless of the thermal boundary condition at the inner boundary. This result
shows that if Cr < r2/4 then M - +oo as -- oo and the entire marginal stability curve lies
in M > 0 as shown in Figure 3 in the cases Cr = 10- 6, 10- 4 and 10-2. Hence M- = -oo
and l- is undefined so that all situations with M < 0 are stable. However, if Cr > r2/4
then M - -oo as - oo and the marginal stability curves extend into M < 0 as shown in
Figure 3 in the case Cr = 1. In this case a finite (negative) value of M- exists and situations
with M < 0 are stable only if M > MC-.

Typical numerically calculated values of M- and l- are shown in Table 3 for a range
of values of Bi and rl in both conducting and insulating cases. Table 4 shows numerically
calculated values of MC, aOMC/9Bi and l- in the case rl = 1 for a range of values of Bi
in the conducting case and demonstrates that, in agreement with the functional form given in
equation (51), M- is a piecewise linear decreasing function of Bi with the discontinuities in

M c /OB i corresponding to the discontinuous jumps between integer values of lC-.
Figure 4(a) and Figure 4(b) show the behaviour of the computed values of MC and

(lC(l - + 1))2/rl plotted as functions of rl when Bi = 0 in the conducting case; they
demonstrate how the solution in the planar case is recovered in the limit rl - oo in which
Mr- = -oo and l- is undefined. The oscillations in M + are shown in greater detail in
Figure 4(c). Just as in the case Cr = 0 the discontinuities in OMc / r l correspond to the
discontinuous jumps between integer values of .

7.4. PHYSICAL MECHANISMS

A planar layer of fluid is always stable to steady Marangoni convection when heated from
above and in order to understand why the behaviour is different in a spherical geometry we
have to think a little about the physical mechanisms involved.

The basic mechanism for steady Marangoni convection is described, for example by Davis
[3], as follows. Suppose a disturbance creates a hot spot at a point P on the free surface.
Since y > 0 surface tension decreases with temperature so there is a net surface traction away
from P which, since the fluid is viscous, drags fluid below the free surface away from P.
Conservation of mass creates an upflow beneath P. If the basic temperature profile of the
layer is warmer inside the free surface than at it then this upflow brings warmer fluid towards
P. This mechanism is sufficient to create steady convection if the Marangoni number is large
enough. Alternatively, if the basic temperature profile of the layer is cooler inside the free
surface than at it then this upflow brings cooler fluid towards P which will tend to damp
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Table 3. Numerically calculated values of M.- and 1-
when Cr = 1 for a range of values of Bi and ri in both
conducting and insulating cases. In the limit Bi - oo
the limiting value of M,- /Bi rather than M,- is given.
When rl > 4C - = 3 then M,- = -oo and l- is
undefined.

Conducting Insulating

rl Bi MX 1c MJ lc

1 0 -233.5978 6 -235.5260 6
1 1 -307.7626 7 -308.4760 7
1 5 -581.3155 7 -582.6892 7
1 10 -923.2566 7 -925.4556 7
1 00 -68.3882 7 -68.5533 7
2 0 -915.9994 13 -920.8942 13
2 1 -1127.3761 13 -1132.8339 14
2 5 -1927.6703 14 -1932.4914 14
2 10 -2924.7334 14 -2932.0632 14
2 00 -199.4126 14 -199.9144 14

Table 4. Numerically calculated val-
ues of M,-, OM,- /Bi and l- when
Cr = 1 in the case rl = 1 for a range
of values of Bi in the conducting case
demonstrating that M,- is a decreasing
piecewise linear function of Bi.

Bi M- aM,-/OBi 1-

0 -233.598 77.8453 6
1 -307.763 68.3882 7
2 -376.151 68.3882 7
3 -444.539 68.3882 7
4 -512.927 68.3882 7
5 -581.316 68.3882 7
6 -649.704 68.3882 7
7 -718.092 68.3882 7
8 -786.480 68.3882 7
9 -854.868 68.3882 7

10 -923.257 68.3882 7

out the the hot spot and so stabilise the layer. Clearly this mechanism is most effective when

Bi = 0, since when Bi =A 0 some heat is lost to the surrounding passive gas leaving less to
generate surface tension gradients. In the limit Bi --- oo the free surface is isothermal and
thermocapillary effects are entirely absent.
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Fig. 5. Numerically computed values of FI/Cr, defined by equation (61), plotted as functions of I > 1 when

rl = 1,2and 3.

This basic mechanism is independent of the deflection of the free surface and describes
the situation when Cr = 0. If Cr 0 then the deflection of the free surface can have either a
stabilising or destabilising influence on the layer. If the basic temperature profile of the layer
is warmer inside the free surface than outside it then if the free surface is depressed over the
upflow at P then it helps to warm the hot spot, while if the free surface is elevated over the
upflow at P then it helps to cool the hot spot. Alternatively, if the basic temperature profile of
the layer is cooler inside the free surface than outside it then if the free surface is depressed
over the upflow at P then it helps to cool the hot spot, while if the free surface is elevated at
P then it helps to warm the hot spot.

In a planar layer currents flowing towards the free surface are always accompanied by
depressions of the free surface which means that if the layer is heated from below then it may
or may not be unstable but the effect of the free surface deflection is always a destabilising
one, while if the layer is heated from above then the layer is always stable. In contrast in
a spherical geometry we shall see that both elevations and depressions of the free surface
over a current flowing towards the free surface are possible, and so when the free surface is
deformable the layer can be unstable when heated from either above or below.

One way to show this is to consider the sign of the so-called "flow indicator", Ft, introduced
by Scriven & Sternling [12] and Sarma [11] for the planar problem and defined to be

F= = F [dr (61)

evaluated at r = r2. Since ur = 0 at r = r 2 if dur/dr > 0 at r = r2 then ur < 0 just below

the free surface while if dur /dr < 0 at r = r2 then Ur > 0 just below the free surface and so

if F1 is positive then ur and F are of different signs just below the free surface which means
that currents flowing towards the free surface are associated with depressions and while if
F1 is negative then ur and F are of the same sign just below the free surface which means
that currents flowing towards the free surface are associated with elevations. Note that F /Cr
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depends on I and rl, but not the thermal boundary conditions. In the planar case we can easily
obtain

2Cr
F = 2 2> ° (62)

cosh a - - a2

and so rising currents near the free surface are always associated with depressions of the free
surface. In the spherical case the expression for F is rather more complicated and so it is
not reproduced here, but typical values of F /ICr are plotted in Figure 5 as a function of for
rl = 1, 2 and 3. Figure 5 clearly shows that F is positive as -- 1+ and negative as 1 - oo,
and so the effect of a deformable free surface can be destabilising when the layer is heated
from the outside as well as when it is heated from the inside. In fact we can show that the
limiting behaviour of F is

rl'r22(2r' + 4r2r2 + 6rl r22 + 3r23)Cr
F > O 20(63)
(1- 1)(4r2 + 7rlr 2 + 4r22 )

as 1 -* 1+ and

r2C 
F r 2 ) < 0 (64)

as I - oo. Notice that although Ft is always negative as I - oo we already know that the
layer is unstable when heated from the outside only if Cr > r2/4.

8. Conclusions

In this paper we have used a combination of analytical and numerical techniques to analyse the
onset of steady Marangoni convection in a spherical shell of fluid with an outer free surface
surrounding a rigid sphere. In so doing we have corrected the formulation of the problem and
the results presented by Cloot & Lebon [2]. If the free surface of the layer is non-deformable
then the layer is always stable when heated from the outside and is unstable when heated
from the inside if the magnitude of the (positive) Marangoni number is sufficiently large. If
the free surface of the layer is deformable then the layer is always unstable when heated from
the inside. It is stable when heated from the outside if Cr < r2/4, but if Cr > r2/4 then it is
unstable if the magnitude of the (negative) Marangoni number is sufficiently large.
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